|
|
|
SCIENTIFIC PROGRAMS AND ACTIVITIES |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| December 5, 2025 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specialized Workshops
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Commutative Algebra, Algebraic Geometry and Representation Theory |
|
| YURI BEREST, Cornell University | |
| 1.Cherednik algebras and differential operators on quasi-invariants | |
| 2. Ideals of the Weyl algebra | |
| IGOR BURBAN, Universitaet Kaiserslautern | |
| Derived categories of coherent aheaves on degenerations of elliptic curves | |
| YURIY DROZD, University of Kiev | |
| Vector bundles and Cohen-Macaulay modules | |
| MIKHAIL KHOVANOV, University of California, Davis | |
| How and why semisimple representations become Grothendieck groups | |
| JAN SCHROER, University of Leeds | |
| Irreducible components of varieties of modules | |
Finite Dimensional Algebras, Algebraic Groups and Lie Theory |
|
| HENNING HAAHR ANDERSEN, Aarhus University | |
| Tilting modules for algebraic and quantum groups | |
| SUSUMU ARIKI, Kyoto University | |
| A tame/wild problem for Hecke algebras of type B | |
| STEPHEN BERMAN, University of Saskatchewan | |
| Covering algebras of Kac-Moody algebras and extended affine Lie algebras | |
| JIE DU, University of New South Wales | |
| 1.Stratified algebras and representations of finite groups of Lie type | |
| 2. Ringel-Hall algebras and the geometric setting ofquantum GL_n | |
| MATTHEW DYER, University of Notre Dame | |
| Shellability and heighest weight representations | |
| KARIN ERDMANN, University of Oxford | |
| Tilting modules for Schur algebras | |
| YUN GAO, York University | |
| A
primer to extended affine Lie algebras (1.Extended affine Lie algebras: classification 2. Extended affine Lie algebras: representation) |
|
| J.E. HUMPHREYS, University of Massachusetts, Amherst | |
| Cells in affine Weyl groups and reduced enveloping algebras | |
| ALEXANDER S. KLESHCHEV, University of Oregon | |
| Cartan determinants and Shapovalov forms | |
| ZONGZHU LIN, Kansas State University | |
| TBA | |
| VOLODYMYR MAZORCHUK, Uppsala University | |
| Stratified algebras arising in Lie theory | |
| BRIAN PARSHALL, University of Virginia | |
| TBA | |
| ARTURO PIANZOLA, University of Alberta | |
| Torsors and infinite dimensional Lie algebras | |
| TOSHIYUKI TANISAKI, Osaka University | |
| Character formulas of Kazhdan-Lusztig type | |
| PETER J. WEBB, University of Minnesota | |
| Lie theory in the context of finite groups | |
|
|
|
| GEORGIA BENKART, University of Wisconsin, Madison | |
| Two-parameter quantum groups - they are doubly good | |
| VYJAYANTHI CHARI, University of California, Riverside | |
| Weyl modules and the fusion product for representations of affine Lie algebras | |
| BANGMING DENG, Beijing Normal University | |
| Hall algebra and their relations to quantized enveloping algebras | |
| SEOK-JIN KANG, Korea Institute for Advanced Study | |
| Quantum affine algebras and combinatorics of Young walls | |
| ZONGZHU LIN, Kansas State University | |
| Hall algebra and their relations to quantized enveloping algebras | |
| KONSTANZE RIETSCH, University of Oxford | |
| Introduction to perverse sheaves | |
| YOSHIHISA SAITO, University of Tokyo | |
| Introduction to perverse sheaves and canonical bases | |
| OLIVIER SCHIFFMANN, Yale University | |
| 1.Hall algebra of the cyclic quiver | |
| 2. Elliptic algebras and weighted projective lines | |
| JIE XIAO, Tsinghua University | |
| Hall algebra and their relations to quantized enveloping algebras | |